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A simple and e)cient error analysis for multi-step solution
of the Navier–Stokes equations
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SUMMARY

A simple error analysis is used within the context of segregated :nite element solution scheme to solve
incompressible �uid �ow. An error indicator is de:ned based on the di<erence between a numerical
solution on an original mesh and an approximated solution on a related mesh. This error indicator is
based on satisfying the steady-state momentum equations. The advantages of this error indicator are,
simplicity of implementation (post-processing step), ability to show regions of high and=or low error,
and as the indicator approaches zero the solution approaches convergence. Two examples are chosen for
solution; :rst, the lid-driven cavity problem, followed by the solution of �ow over a backward facing
step. The solutions are compared to previously published data for validation purposes. It is shown that
this rather simple error estimate, when used as a re-meshing guide, can be very e<ective in obtaining
accurate numerical solutions. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The method chosen to solve the incompressible Navier–Stokes equation is the method pre-
sented by Comini and Del Giudice [1; 2] and used later by Kim and Chung [3]. This method
has several advantages over direct methods, one major advantage is less computer memory
is required to obtain a solution [4]. Another advantage is the Ladyzhenskaya–Babuska–Brezzi
(LBB) [5; 6] condition can be relaxed, and an equal interpolation for the velocities and pres-
sure can take place. In this work the method of Comini and Del Giudice [1; 2] and Kim
and Chung [3] is compared with that of Dukowicz and Dvinsky [7]. The result of this com-
parison shows that the method of Comini and Del Giudice is a subset of that presented by
Dukowicz and Dvinsky. However, by observing the numerical method based on the derivation
of Dukowicz and Dvinsky, clear insight into the nature of the pressure–velocity approximations
can be observed. Work is presently being done by Gresho et al. [8] addressing inaccuracies
in the pressure approximations for these type of methods. Gresho points out that any pres-
sure projection method is limited to time-accurate solutions and is inappropriate for seeking
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590 R. M. FITHEN

steady-state solutions via large time steps. In this paper, a pressure projection method is used
to obtain a steady solution via small time steps. However, the error analysis presented in this
work is purely based on satisfying the steady-state form of the governing equations.

Error estimation seeks answers to basically two questions. (1) What is the error in the
solution at hand (error estimation), and (2) what is the change in the error if we re:ne our
mesh (error indicators)? In this paper only the second form of error analysis is used. In e<ect,
we seek to answer the question ‘If we re:ne the mesh in a particular way, what then is the
di<erence between the two solutions?’ In order to answer this question we turn to the work
in References [9–11]. The authors suggest a hierarchical approach in which all previously
existing basis functions with each element are preserved, and additional basis functions are
added. Thus, the added degree of freedom can be viewed as a perturbation within the original
solution and, hence, can be used to determine the di<erence between the two successive
solutions. The :rst non-perturbed solution is obtained in the standard way, while the second
solution is obtained by iterating once using the non-perturbed solution as a starting point. In
the present work, this type of hierarchical basis function will be used in order to obtain an
indicator of the error in the domain.

PROBLEM STATEMENT

Many problems existing in �uid mechanics can be treated as constant property incompressible
�ows. Some examples include subsonic �ow of gases, and �ow of most liquids. This class
of problems can be solved through the use of the incompressible Navier–Stokes equations.

@u
@t

+ u
@u
@x

+ v
@u
@y

=fx − @P
@x

+
1
Re

(
@2u
@x2

+
@2u
@y2

)
(1)

@u
@t

+ u
@v
@x

+ v
@v
@y

=fy − @P
@y

+
1
Re

(
@2v
@x2

+
@2v
@y2

)
(2)

These equations are derived from a balance of momentum in both the x and y directions.
The conservation of mass yields,
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In an incompressible �ow situation, the momentum equations must be solved subject to the
constraint that the mass must be conserved for all time t. Satisfying this constraint is in
fact one of the major ways in which solution techniques have been classi:ed. Solving the
continuity constraint while simultaneously satisfying our momentum equations is classi:ed as
a mixed method. Solving this constraint through the use of a bulk modulus-type approach is
classi:ed as a penalty method,
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where  is a speci:ed large number. Both the mixed and penalty formulation to incompressible
�ow problems are presented by Reddy [12]. Solving each of these equations separately such
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MULTI-STEP SOLUTION FOR NAVIER–STOKES 591

that at the end of the solution=time step all the equations are satis:ed can be classi:ed as a
segregated (or fractional step) approach. From observing Equation (4), one can immediately
observe a form of the LBB condition. In order for Equation (4) to be exactly satis:ed in a
discrete sense, the pressure must be of one polynomial order lower than that of the velocity.

For the weak form of the weighted residual methods the boundary conditions depend on
how the governing di<erential equations are weakened. If the boundary is represented as Q.
The following boundary conditions will be applied to a subset of Q:

1. Essential boundary condition applied to Qc

u = ubc
v = vbc

(5)

2. Natural boundary condition applied to Qn
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Where, nx and ny are unit normals in the x and y directions normal to the boundaries.

SOLUTION PROCEDURE

The solution procedure represented below is that of Dukowicz and Dvinsky [7]. For fully
implicit Navier–Stokes equations, the x and y equations may be represented in a matrix
operator form as:

[M](un+1 − un)−Rt[K]un+1 + Rt[Cx]pn+1 =Rt{Fx}n+1 (7)

[M](vn+1 − vn)−Rt[K]vn+1 + Rt[Cy]pn+1 =Rt{Fy}n+1 (8)

The Continuity equation can be represented through :nite elements as:

[Cx]T un+1 + [Cy]T vn+1 = {0} (9)

Where,
[M] is the discrete form of the mass matrix,
[K] is the discrete form of the convective and di<usive portions of the Navier–Stokes
equations,
[Cx] is the discrete form of the x component of gradient matrix,
[Cy] is the discrete form of the y component of gradient matrix,
[Cx]T is the discrete form of the x component of divergence matrix,
[Cy]T is the discrete form of the y component of divergence matrix,
{F} is the right hand side to the Navier–Stokes equations, containing the boundary con-
ditions,
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592 R. M. FITHEN

These three equations can be represented in full matrix form as:




[M]−Rt[K] 0 Rt[Cx]

0 [M]−Rt[K] Rt[Cy]

[Cx]T [Cy]T 0






un+1

vn+1

�pn+1




=




[M] 0 −Rt[Cx]
0 [M] −Rt[Cy]
0 0 0






un

vn

pn


+ Rt




{Fx}n+1

{Fy}n+1

{0}


 (10)

Where, �pn+1 =pn+1 − pn. In order to solve this system of equations for the velocities and
pressures at the next time step, the left hand matrix should be inverted. If one chooses to
pursue this approach, there will be several problems encountered. First, the LBB condition
must be satis:ed. Also, pivoting must be reformed in the inversion due to zeros on the
diagonals of the matrix to invert. This type of approach is commonly called a time dependent
mixed formulation [12]. If instead of inverting this matrix we look for an approximately
factorized form, we can signi:cantly reduce the work load required to solve this system.
Following the work of Dukowicz and Dvinsky [7] we develop an approximately factorized
form of the matrix,




[M]−Rt[K] 0 Rt[Cx]

0 [M]−Rt[K] Rt[Cy]

[Cx]T [Cy]T 0




≈




[M]−Rt[K] 0 0
0 [M]−Rt[K] 0
0 0 [I ]




×




[I ] 0 Rt[M]−1[Cx]

0 [I ] Rt[M]−1[Cy]

[Cx]T [Cy]T −Rt
[
[L]− [Cx]T [M]−1[Cx]− [Cy]T [M]−1[Cy]

]

 (11)

Where, [L] is the Laplacian operator in :nite element form. As usual with the approximate
factorization methods, these equations are separated and solved in two solution steps.




[M]−Rt[K] 0 0
0 [M]−Rt[K] 0
0 0 [I ]





u∗

v∗

Z




=




[M] 0 −Rt[Cx]
0 [M] −Rt[Cy]
0 0 0






un

vn

pn


+ Rt




{Fx}n+1

{Fy}n+1

0


 (12)
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followed by:




[I ] 0 Rt[M]−1[Cx]

0 [I ] Rt[M]−1[Cy]

[Cx]T [Cy]T −Rt
[
[L]− [Cx]T [M]−1[Cx]− [Cy]T [M]−1[Cy]

]





un+1

vn+1

�pn+1




=



u∗

v∗

Z


 (13)

Where Z is the null vector obtained from Equation (12). In order to solve Equation (13),
the matrix equation must be changed into a similar set of matrix equations by performing the
following matrix operations.

Row (3) = Row (3)− [Cx]T ×Row (1)−[Cy]T ×Row (2):
Row (1) = [M]×Row (1):
Row (2) = [M]×Row (2):
Upon performing the basic matrix operations, one obtains:


[M] 0 Rt[Cx]
0 [M] Rt[Cy]
0 0 Rt[L]






un+1

vn+1

�pn+1


 =




[M]u∗

[M]v∗

[Cx]T u∗ + [Cy]T v∗


 (14)

Breaking matrix Equations (12) and (14) apart into components, we obtain the following
solution sequence:

Step 1: Guess a pressure distribution pn

Step 2: Solve the momentum equations

[[M]−Rt[K]] u∗ = [M]un −Rt[Cx]pn + Rt{Fx} (15)

[[M]−Rt[K]] v∗ = [M]vn −Rt[Cy]pn + Rt{Fy} (16)

Step 3: Solve for the pressure correction which will enforce continuity

[L]�pn+1 =
1
Rt
[
[Cx]T u∗ + [Cy]T v∗

]
(17)

Step 4: Update velocities and pressures

[M]un+1 = [M]u∗ −Rt[Cx]�pn+1 (18)

[M]vn+1 = [M]v∗ −Rt[Cy]�pn+1 (19)

pn+1 = �pn+1 + pn (20)

Step 6: Test for convergence, if not converged then, return to Step 2.

This formulation is exactly that presented by Comini and Del Guidice [1]. This formulation
is also very close in concept to that of the SIMPLE formulations of Patankar [13].
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594 R. M. FITHEN

Since an approximate factorization method never gives back the original matrix, it is very
instructive to observe what matrix is actually being solved through this formulation. Mul-
tiplying out Equation (11) gives some interesting insight into this method of solving the
incompressible Navier–Stokes equations. Multiply out this factorization from Equation (11)
the left hand side matrix becomes:


[M]−Rt[K] 0 Rt[Cx]−Rt2[K][M]−1[Cx]

0 [M]−Rt[K] Rt[Cy]−Rt2[K][M]−1[Cy]

[Cx]T [Cy]T −Rt
[
[L]− [Cx]T [M]−1[Cx]− [Cy]T [M]−1[Cy]

]

 (21)

Using this segregated solution method, the actual equations to be solved are not the discrete
Navier–Stokes equations, but are an approximation of the discrete Navier–Stokes equations.
Several interesting items may be observed at this point. First, as [L] approaches the discrete
laplacian operator, [Cx]T [M]−1[Cx] + [Cy]T [M]−1[Cy], the pressure contribution to the con-
tinuity equation becomes lower. In the limit, the continuity becomes undisturbed and may
be exactly satis:ed (in a :nite element sense). However, there are still many unanswered
questions about the exact form of the pressure boundary condition and, in fact, this is an area
of ongoing research. The extra terms in the momentum equations will never go to zero unless
Rt becomes zero. Hence, the Navier–Stokes equations have in a sense become corrupted. One
may argue that this in fact is of no consequence since, as pn+1 approaches pn this term ap-
proaches zero. However, in solving a steady-state problem one must use this unsteady analysis
to converge to a steady solution. In the transient analysis, errors may be introduced that may
in fact corrupt the steady-state solution unless Rt is su)ciently small [8]. If this approximate
factorization method is used to seek out the steady-state solution to Navier–Stokes equation,
the time step should be small enough such that terms like; Rl2[K][M]−1[Cx] are very small.
If this is true, the unsteady solution will be time-accurate thereby yielding a steady solution
(if one exists).

The elemental level components of the matrices are de:ned as follows (using index nota-
tion):
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Kij =Knl
ij +Kl

ij (28)

Fx
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}
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These elemental matrices must be combined to form the global system matrices. This combi-
nation is processed in such a way as to force a continuous solution over the entire solution
domain [12].

FINITE-ELEMENT FORMULATION

As in the case of general element the overall domain is divided into small subdomains (ele-
ments) and a basis function over each particular subdomain is generated. The chosen element
is triangular and the chosen basis functions can represent any linear function over that trian-
gle. There are actually four basis functions applied over the domain three of the general type
and one hierarchical type. These four are shown in Figure 1. The :rst three basis functions
are simply the basis functions from the well-known constant strain triangles. The fourth basis
function is of a hierarchical nature and is composed of three composite linear triangles which
all equal one at the centroid of the major triangle, and equal zero everywhere on the edges of
the major triangle. Although this fourth basis function will not be used within the solution, it
will be used to answer one simple question. What will be the e<ect of breaking every triangle

Figure 1. Element basis functions.
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596 R. M. FITHEN

in the domain into three triangles each contained with the original triangles and each sharing
a common point at the original triangles centroid? With these basis functions a solution to
the Navier–Stokes equations will take the form:

u=
N∑
e=1

(
3∑
i=1

Te
i ui + Te

4 �u
e
4

)
(31)

v=
N∑
e=1

(
3∑
i=1

Te
i vi + Te

4 �v
e
4

)
(32)

P=
N∑
e=1

(
3∑
i=1

Te
i Pi + Te

4 �P
e
4

)
(33)

Here �ue4 ; �ve4 and �Pe
4 , represent the perturbation in the solution at the centroid of the

element e. The general solution proceeds in the following manner. We :rst select a space
R spanned by a set of basis functions of the form, Te

i , where i=1; 2; 3 and e=1; 2; 3 : : : N
(N =number of elements). The space R is a subspace of S, which is spanned by the set of
basis functions, Te

i , where i=1; 2; 3; 4 and e=1; 2; 3 : : : N (N =number of elements). Stepping
into the space R, we can represent all functions as a linear combination of the Te

i s contained
within R. Using a weighted residual method we determine the coe)cients of this linear
combination which in the present context are nodal values of the dependent variables. The
steps taken up to this point are those of the standard :nite element method. It is from this
point we diverge in our thought process to obtain error indicators. We now construct a solution
from space S using the Te

i s as basis functions. Using the weighted residual method as before
to develop the system matrices, we stop short of solving these equations, and examine the
matrices. The global set of equations can be represented as,[

[KR] [KRS]
[KSR] [KS]

]{
{aR}
{aS}

}
=

{
{FR}
{FS}

}
(34)

This formulation of error analysis is similar to that presented by the authors of Refer-
ences [9–11]. Observing this equation we see that the original global sti<ness matrix [KR] is
embedded within the matrix, and the solution {aR} is also intact. We now seek an approximate
solution to {aS} which can be obtained in one step as,

{aS}=[KS]−1{FS} − [KS]−1[KSR]{aR} (35)

One very important observation can be made at this point. The fourth degree of freedom in
each element is associated with an internal node, hence no other element within the mesh will
contain this node. This e<ectively makes the error analysis an element-by-element process and
the global matrix need not be assembled. In order to obtain a more clear understanding we
pick a representative element, and construct the u-momentum equation,


K̂11 K̂12 K̂13 K̂14

K̂21 K̂22 K̂23 K̂24

K̂31 K̂32 K̂33 K̂34

K̂41 K̂42 K̂43 K̂44







u1

u2

v3
�ve4




=




Qx
1

Qx
2

Qx
3

Qx
4




(36)
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where

K̂ ij =Knl
ij +

1
Re

Kl
ij (37)

Qx
i =Fx

i − Cx
ijpj (38)

One may notice at this point the sti<ness matrix and force vector are not the same as in
Step 2 of our solution process. If the equations in Step 2 are divided by Rt and the limit
is taken as Rt→∞, we obtain the sti<ness matrix and force vector associated with the
steady-state form of the momentum equations, the solution to which we seek. Based on this
argument the original solution obtained within the context of standard :nite element method
should be converged in time before this error analysis can e<ectively take place. Seeking an
approximation to the fourth degree of freedom within each element we obtain,

�ue4 =
Qx

4 − K̂41u1 − K̂42u2 − K̂43u3

K̂44
(39)

Similarly for the y-momentum equation

�ve4 =
Qy

4 − K̂41v1 − K̂42v2 − K̂43v3
K̂44

(40)

At this point it is constructive to look at the structure of the matrices. Due to the choice of
basis functions, for any element con:guration several of the matrix components become zero.

Kl
14 =Kl

41 =Kl
24 =Kl

42 =Kl
34 =Kl

43 = 0 (41)

Cx
44 =C

y
44 = 0 (42)

As a result of Equation (42), the contribution of the pressure error (�pe
4) in the element has

no e<ect on the velocity error (�ue4). With this in mind the expanded approximate solution is:

�ue4 =
Fx

4 − Cx
41p1 − Cx

42p2 − Cx
43p3 − K̂41u1 − K̂42u2 − K̂43u3

K̂44
(43)

�ve4 =
F

y
4 − C

y
41p1 − C

y
42p2 − C

y
43p3 − K̂41v1 − K̂42v2 − K̂43v3
K̂44

(44)

The solutions to �ue4 and �ve4 can be used as indicators of how well the steady-state momentum
equations are satis:ed. A functional value of the error indicator over the domain can be
expressed as,

�x =
N∑
c=1

Te
4�v

e
4 (45)

�y =
N∑
e=1

Te
4 �v

e
4 (46)
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With this error indicator a su)cient norm may be devised. In the present work an L2 norm
will be used,

L2 =
N∑
e=1

[ ∫
S e

(�e
2

x + �e
2

y ) dS e
]

(47)

In the context of the element matrices we obtain,

L2 =
N∑
e=1

[�ue4M
e
44�u

e
4 + �ve4M

e
44�v

e
4 ] (48)

In order to make this error independent of the size of the domain we simply divide by the
area to obtain the L2 per unit area. In order to obtain a graphically reasonable error indicator,
a projection method is used to change from a space of functions (S − R) which can be
represented by the basis functions Te

4 where e=1; 2; 3 : : : N (N =number of elements) to a
space (R) which can be represented by the basis Te

i , where i=1; 2; 3 and e=1; 2; 3 : : : N
(N =number of elements), by minimizing the following functionals,

Vx =
N∑
e=1



∫
S e

(
3∑

j=1
Te
j E

x
j −Te

4 �u4

)2
dS e


 (49)

Vy =
N∑
e=1



∫
S e

(
3∑

j=1
Te
j E

y
j −Te

4 �u4

)2
dS e


 (50)

Finally, the errors in x and y are added together in a vector sense (Ei =
√
Ex2
i + Ey2

i ) to obtain
a scalar plot of the momentum error indicator. This quantity will be used later to develop
contour plots of the momentum error in the domain.

NUMERICAL RESULTS

Two problems commonly seen in the literature were chosen as models — driven lid cavity, and
�ow over a backstep. The driven lid problem is a challenging problem due to the numerical
singularity at the lid–cavity interface. Sohn et al. [4] suggest an integration by parts on the
right hand side of the �p equation to help treat these geometric singular points. In this work
no attempt is made to correct this singularity in any way. As a matter of fact, this singularity
is a source of error which drives the error analysis for the cavity problem. The numerical
results obtained for the cavity �ows are compared with previous numerical results obtained
by Ghia and Ghia [14]. Flow over a backstep is compared with the experimental results of
Morgan et al. [15]. All solutions were continued until a velocity residual equation de:ned
below was satis:ed. ∫

S | XV n+1 − XV
n|2 dS∫

S | XV n|2 dS 60:001 (51)

All solutions were taken with a time step, Rt, of 0.01. Within each time step the numerical
equations were solved using a conjugate gradient or bi-conjugate gradient iteration method.
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Lid driven cavity *ow

The geometry for the cavity problem is a unit square with zero velocity over all of the
boundary except, for the top (y=1) where the velocity is unity. The geometry for the cavity
problem is shown in Figure 2. The Reynolds number varies as 100, 400, 1000 and 3200.
These Reynolds numbers correspond to the set of numbers presented by Ghia and Ghia [14].
For each Reynolds number four di<erent grid sizes will be used, 15× 15; 20× 20; 30× 30
and 50× 50. These grids were generated o< of one 12-noded quadrilateral isoparametric el-
ement where the side nodes were shifted towards the corner nodes, as shown in Figure 3.
This type of generation was used to ensure that each grid distribution can be consistently
compared to the others in the solution and error sequence. The :rst judge of any error indica-
tor is its approach to zero as the number of grid nodes are increased. In order to investigate
this property for the indicator, we investigated the L2 error of the velocity as a function of
the number of nodes for each mesh and Reynolds numbers. For the entire range of the grids

Figure 2. Geometry.

Figure 3. Twelve-noded isoparametric grid element and 30× 30 resultant grid.
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600 R. M. FITHEN

Figure 4. L2 error for all cavity cases.

and Reynolds numbers covered in the cavity problem, the L2 norm can be represented on
one plot as shown in Figure 4. For every Reynolds number, the error indicator decreases as
the number of nodes increase. This is exactly the behavior one would desire from an error
indicator. Also, each Reynolds number case displays the same rate of convergence. Since the
element types for all simulations are linear triangular, this is also an expected behavior. The
next desirable feature of an error indicator is to display in which region of the domain the
errors are greater than in others. For the cavity case, this behavior should be known ahead of
time. The upper right and left of the cavity will display a singularity type of behavior. This
should in fact be the major source of error in the domain. To investigate this, each Reynolds
number will be considered and the projected error plots will be examined.

Reynolds number 100. For a Reynolds number of 100, the projected L2 error plot is shown in
Figure 5. Several interesting features of this plot should be noted. First, the error is greatest in
the upper left and right of the cavity. This is exactly what one should expect. In the absence of
an exact solution the actual value of these L2 errors are as good as can be expected, especially
since these errors are produced in a post-processing step. Another very interesting feature of
this error plot is that these errors seem to propagate out into the cavity. For example, the
error generated at the upper right hand corner of the cavity is actually convected down the
cavity by the local velocity. The actual values of this L2 error is very small, as shown in
the legend of the contour plot. Couple this with the fact that this plot is not smoothed, and
one may conclude that this post-processing step can be of extreme value when attempting to
:nd the source of possible errors in a simulation. For a Reynolds number of 100 this solution
sequence is compared to the computational work of Ghia, shown in Figure 6.
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Figure 5. L2 error Re=100 (50× 50 grid).

Figure 6. U and V velocity pro:les compared to Ghia (Re=100).

Reynolds number 400. For a Reynolds number of 400, the projected L2 error plot is shown
in Figure 7. When this plot is compared to the Reynolds number 100 plot there are several
di<erences that are apparent. First, the maximum value of the error is greater for the Reynolds
number 400 case. More interesting is the appearance of the error contours. In the Reynolds
number 400 case, the error is generated at the singularity points and is convected down into
the cavity (for the upper right corner) or across the top of the cavity (for the upper right of
the cavity). This behavior has been seen before by Oden et al. [16]. In their work an error
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Figure 7. L2 error Re=400 (50× 50 grid).

equation was developed for a hyperbolic system of equations. Hence, the error equations
have a convective characteristic in that an error produced in one area of the domain will be
convected through the domain by the local velocity. Their work involved the development of
an evolution of error equations to approximate the errors in the domain in space and time. In
fact if one represents the errors in a solution by E= ufi − uei where uei is the exact solution
(which does not exist in our case) and ufi is the :nite element representation of the solution
to the problem at hand, these terms may be used to develop an error equation.

0=
@uei
@t

+ uej
@uei
@xj

− fi − 1
Re

@2uei
@xj@xj

(52)

R=
@ufi
@t

+ ufj
@ufi
@xj

− fi − 1
Re

@2ufi
@xj@xj

(53)

Where R is the :nite element type residual. If the :nite element representation of the solution
satis:es the continuity constraint, i.e. ufi;1 = 0. Then, subtracting one of these equations from
the other, one may obtain,

R=
@Ei
@t

+ ufj
@Ei
@xj

+ Ej
@uei
@xj

− 1
Re

@2Ei
@xj@xj

(54)

Although this equation will not be solved in any way or form, it is instructive to observe the
way in which the error of a solution should perform. Here, the term ufj [(@Ei)=(@xj)] is the
:nite element solution to the velocity, convecting the error through the domain. This behavior
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Figure 8. U and V velocity pro:les compared to Ghia (Re=400).

Figure 9. L2 error Re=1000 (50× 50 grid).

exist throughout all of the solutions in the present work. It is most apparent in the cavity
solutions due to the existence of a high error at the upper corners. For this Reynolds number
of 400 a comparison with the previous work of Ghia is shown in Figure 8.

Reynolds number 1000 & 3200. For a Reynolds number of 1000, the projected L2 error
plot is shown in Figure 9. For this Reynolds number, the L2 error plot shows a behavior much
like the 100 and 400 case. However, the errors are convected in a narrower band throughout
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Figure 10. L2 error Re=3200 (50× 50 grid).

Figure 11. U and V velocity pro:les compared to Ghia (Re=1000).

the cavity. This is what one may expect due to the higher Reynolds number, the ratio of error
convection to error di<usion will become large. This is exactly what can be seen by observing
our error equation, Equation (54). As the Reynolds number increases, 1=Re[(@2Ei)=(@xj=@xj)]
decreases thereby allowing lower amounts of di<usion of the error. This narrowing of the
convected portion of the error become more evident for the Reynolds number 3200 case, as
shown in Figure 10. Comparison between the :nite element solutions and that of Ghia is
shown in Figures 11 and 12.
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Figure 12. U and V velocity pro:les compared to Ghia (Re=3200).

Figure 13. Geometry for backstep case.

FLOW OVER BACKSTEP

The next example is �ow over a backstep. This geometry has also been chosen due to the
availability of experimental data, the existence of a circulation zone, and lack of a numerical
singularity [15]. The geometry chosen is case (iii) from Morgan et al. [15] and is shown in
Figure 13. The Reynolds number of 150 is also chosen from case (iii).

The L2 error convergence plot of the solution process is shown in Figure 14. The conver-
gence process does not follow a straight line on a log–log plot for this example. This occurs
due to the fact that for a course mesh, the inlet boundary conditions cannot be met correctly.
However, as the mesh becomes :ner and :ner, the inlet boundary condition approaches its
required distribution. The L2 error contour plot is shown in Figure 15. This plot shows most
of the error is produced at the corner of the backstep. There is a slight convection of this
error down-stream of this corner, but nothing like that which occurred in the cavity problems.

In order to add validity to this numerical process we compare to the experimental results
of Morgan et al. [15]. These comparisons are shown in Figures 16 and 17.

As in the cavity solutions, this comparison indicates the same trends. As the error indicator
recedes, the di<erence between the numerical solution and experimental results also recedes: a
pattern which would give any numerical analyst a basis for determining how well his solution
is spatially converged.
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Figure 14. Convergence history for backstep case.

Figure 15. L2 error for backstep case.
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Figure 16. U velocity distribution at x=3:8 behind the backstep.

Figure 17. U velocity distribution at x=5:0 behind the backstep.

CONCLUSIONS

A simple yet e)cient method has been presented for determining an error estimator in incom-
pressible �uid simulations. The error estimate is determined from the change in two levels of
grid re:nement, hence this indicator simply tells the user in what region and by how much
the answer would change if he re:ned the grid in a speci:c manner. This error analysis is
very e)cient due to existence only in a post-processing step. Two examples were shown to
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correlate very well with previously published information, i.e., as the error indicator became
small; so too did the di<erence between the solution at hand and the data in the literature.
Although the method was applied only to triangular elements, it should work equally as well
with other types of elements.

Finally, as a result of this error analysis presented here, one should always consider sources
and locations of possible error when producing a grid for a simulation. Convection-type
equations will always have some convective component to their error equations. Hence, errors
produced in a course grid region of the domain can actually convect down into a :ne grid
region of the domain.
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